Demis Hassabis: Future of AI, Simulating Reality, Physics and Video Games Demis Hassabis: AI未来、现实模拟、物理与游戏

Original Video: Lex Fridman Podcast #475 原始视频: Lex Fridman Podcast #475

Interview with Demis Hassabis, CEO of Google DeepMind. 与Google DeepMind CEO Demis Hassabis的访谈。

Key Logic: The Conjecture of Learnable Patterns 核心逻辑:可学习模式猜想

The conversation revolves around Demis Hassabis's profound conjecture: "any pattern generatable or discoverable in nature, can be efficiently discovered and modeled by classical learning algorithms." This idea is underpinned by breakthroughs at Google DeepMind with AlphaFold and AlphaGo, and the remarkable ability of the VEO model to simulate physical phenomena like liquids. 本次对话围绕Demis Hassabis提出的一个引人深思的猜想展开,即“自然界中任何可生成或被发现的模式,都能被经典学习算法高效发现和建模”。他通过Google DeepMind在AlphaFoldAlphaGo上取得的突破,以及VEO模型在模拟液体等物理现象方面的惊人能力,来支撑这一观点。

Core Insight 核心洞察

Nature is not random; its complex structures and evolutionary processes imply the existence of learnable low-dimensional manifolds, enabling AI to efficiently "reverse-engineer" physical laws. 核心在于,自然界并非随机,其复杂的结构和演化过程意味着存在可学习的低维流形,使得AI能够高效地“逆向学习”物理规律。

Conjecture Validation Pillars 猜想验证支柱

This pie chart illustrates the three key pillars supporting the conjecture: Breakthroughs in AI Games (AlphaGo), Molecular Biology (AlphaFold), and Realistic Physical Simulation (VEO). 本饼图展示了支撑该猜想的三大关键支柱:AI游戏突破 (AlphaGo)分子生物学 (AlphaFold)真实物理模拟 (VEO)

AI's Deep Understanding of the Physical World AI对物理世界的深度理解与建模能力

Simulating Non-Linear Dynamics: VEO's Breakthrough 模拟非线性动力学:VEO的突破

Lex Fridman notes the human difficulty in predicting highly non-linear dynamic systems. Demis Hassabis counters by highlighting the surprising ability of classical learning systems, specifically VEO (Video Generation Model), to handle fluid dynamics. Lex Fridman指出人类难以对高度非线性的动态系统做出清晰预测。Demis Hassabis则强调了经典学习系统,特别是VEO(视频生成模型)在处理流体动力学方面的惊人能力。

  • Traditional fluid dynamics (e.g., weather prediction, Navier-Stokes equations) are computationally intensive.传统流体动力学(如天气预测、纳维-斯托克斯方程)计算量巨大。
  • VEO excels at simulating liquids, materials, and specular lighting, even transparent liquid flowing through a hydraulic press.VEO擅长模拟液体、材料和镜面光照,甚至包括透明液体流经液压机的场景。
  • This suggests AI can "reverse-engineer" underlying structures just by watching YouTube videos, implying a low-dimensional manifold exists for these material behaviors.这意味着AI仅通过观看YouTube视频就能“逆向工程”这些材料行为的底层结构,暗示存在某种低维流形
"Therefore, maybe there's some low-dimensional manifold that if we fully understood what its internal mechanism was, we could learn it." “因此,也许存在某种低维流形,如果我们能完全理解其内部机制,就可以学习到它。”

VEO's Physical Simulation Capabilities VEO的物理模拟能力

Fluid Dynamics流体动力学

Realistic liquid flow真实液体流动

Material Behavior材料行为

Deformation & interaction形变与交互

Specular Lighting镜面光照

Realistic reflections真实反射

VEO's capacity to generate coherent 8-second videos, indiscernible from reality by the naked eye, suggests a deeper "understanding" than mere pattern matching. VEO能够生成肉眼几乎无法区分的连贯8秒视频,这表明它不仅仅是简单的模式匹配,而是具备了更深层次的“理解”。

The Conjecture: Nature's Learnable Structure 核心猜想:自然的结构可学习

Demis Hassabis's "super interesting conjecture" from his Nobel Prize lecture posits that patterns in nature are efficiently discoverable by classical learning algorithms. This stems from DeepMind's work on AlphaX projects (AlphaGo, AlphaFold), which tackle problems with astronomically vast solution spaces. Demis Hassabis在诺贝尔奖演讲中提出的“超级有趣的猜想”认为,自然界中的模式可以被经典学习算法高效发现。这源于DeepMind在AlphaX项目(AlphaGo,AlphaFold)上的工作,这些项目解决的都是拥有天文数字般巨大解空间的问题。

Vast Problem Spaces vs. Tractable Solutions:巨大问题空间与可处理的解决方案:

  • Possible protein structures: 10300可能的蛋白质结构:10300
  • Possible Go board positions: 1070Go的可能局面:1070

These numbers far exceed the number of atoms in the universe. Yet, AI finds solutions efficiently. 这些数字都远超宇宙中的原子数量,然而AI却能高效找到解决方案。

The core reason: Natural systems possess inherent structure, shaped by evolutionary processes (e.g., protein folding, geological formation, cosmic evolution). This structure allows AI to learn a "manifold" that guides efficient search for solutions, making seemingly intractable problems tractable. 核心原因在于:自然系统具有内在的结构,这些结构是由演化过程塑造的(例如蛋白质折叠、地质形成、宇宙演化)。这种结构使得AI能够学习到一个“流形”,从而高效地搜索到解决方案,将看似无法处理的问题变得“可处理”。

Natural Evolution自然演化
Inherent Structure内在结构
Learnable Manifolds可学习流形
Efficient AI Modeling高效AI建模

The Universe as an Information System & Limits of AI 宇宙作为信息系统与AI的极限

Demis Hassabis believes "information is the most fundamental unit of the universe," suggesting the universe is an information system. This frames the P=NP problem as a physics question related to what "Learnable Natural Systems" (LNS) can be efficiently modeled by neural networks running on classical Turing machines. Demis Hassabis认为“信息是宇宙最基本单位”,将宇宙看作信息系统。这使得P=NP问题成为一个物理学问题,与经典图灵机上运行的神经网络能高效建模的“可学习自然系统”(LNS)相关。

  • AlphaGo and AlphaFold prove classical systems (neural networks) are far more capable than previously thought.AlphaGoAlphaFold证明了经典系统(神经网络)的能力远超预期。
  • AI has not yet touched the limits of classical computing capabilities.AI界尚未触及经典系统的能力极限。
  • AGI, built on neural networks, will be the ultimate embodiment of this, directly tied to the P=NP problem.建立在神经网络之上的AGI将是这种能力的终极体现,其界限与P=NP问题直接相关。

While most emergent systems (like Cellular Automata) can be modeled by classical systems, Demis acknowledges challenges with chaotic systems (highly sensitive to initial conditions). 虽然大多数涌现系统(如细胞自动机)可以被经典系统建模,但Demis承认混沌系统(初始条件高度敏感)可能难以建模。

The Challenge of Pure Randomness 纯随机性的挑战

Artificial or abstract things without underlying structure (e.g., factoring large numbers unless patterns exist) may not be amenable to this efficient modeling. 人工创造物或抽象事物(如大数分解,除非数字空间中存在模式)可能不适用这种高效建模。

The ability of VEO to render physics and lighting hints at fundamental characteristics of the universe's structure, motivating the quest for AGI to answer questions like P=NP. VEO在视频生成中渲染物理和光照的能力,暗示了宇宙结构的一些基本特点,这激励着人们构建AGI以回答诸如P=NP的问题。

AI Shaping the Future of Gaming AI重塑游戏的未来

Open World Gaming & Dynamic Content Generation 开放世界游戏与动态内容生成

Demis Hassabis's original love for games fuels his vision of AI's transformative impact. He dreams of "shocking games" built with today's AI, particularly focusing on open-world games where simulations, AI characters, and player interaction dynamically adjust the game experience. Demis Hassabis最初对游戏的热爱驱动着他对AI变革性影响的愿景。他梦想着用今天的AI构建“令人震惊的游戏”,特别是专注于开放世界游戏,其中模拟、AI角色和玩家互动能够动态调整游戏体验。

  • Each player's experience will be unique, co-created with the game.每个玩家的游戏体验将是独一无二的,与游戏共同创造。
  • Traditional open-world games are hard to program and relied on "brittle, limited" systems like Cellular Automata.传统的开放世界游戏很难编程,并依赖于“脆弱、有限”的系统,如细胞自动机。
  • Future Vision: In the next 5 to 10 years, AI systems will genuinely create based on imagination, dynamically changing stories and narratives, acting as the "ultimate 'choose your own adventure' game." This is an interactive VEO.未来愿景:在未来5到10年内,AI系统将能够真正根据你的想象力进行创造,动态改变故事和叙事,成为“终极的‘选择你自己的冒险’游戏”。这是一款交互式VEO。
  • This moves beyond "illusion of choice" to deep personalization, where player choices truly define the world.这将超越“选择的幻觉”,实现深度个性化,玩家的选择将真正定义他们所看到的世界。

Key Advantage: 关键优势:AI can instantly generate content, overcoming high asset creation costs of traditional AAA games.AI可以即时生成内容,克服了传统AAA级游戏高昂的资产创建成本。

The Golden Age of Games & Beyond 游戏的黄金时代与超越

Golden Age: 80s-Early 2000s 黄金时代:80年代-2000年代初

New entertainment media, co-creating stories, social activity. 创造新娱乐媒介,玩家共同创造故事,成为社交活动。

Games as Micro-Simulations 游戏作为微观模拟

Safe, repeatable environments to practice decision-making, winning, and losing (e.g., Jiu-Jitsu). Essential for self-improvement and self-awareness. 安全、可重复的环境,用于练习决策、输赢(如柔术)。有助于自我提升和自我认识。

Demis Hassabis's early work on AI in games like Black and White (AI learning AI via Reinforcement Learning) is a direct lineage to his current pursuit of "general learning systems." He hopes to return to game development as a "post-AGI project." Demis Hassabis早期在《黑与白》等游戏中对AI(通过强化学习的AI学习AI)的研究,与他现在追求的“通用学习系统”一脉相承。他希望在“AGI成功后”能重返游戏开发。

Defining and Measuring Artificial General Intelligence (AGI) 通用人工智能(AGI)的定义与衡量

Demis's High-Threshold AGI Definition Demis对AGI的高门槛定义

Demis Hassabis predicts a 50% chance of achieving AGI by 2030, based on a stringent definition: Demis Hassabis预测到2030年50%的几率实现AGI,基于一个严苛的定义:

"Can we match the cognitive functions of the brain?" “我们能否匹配大脑的认知功能?”

This implies a general-purpose Turing machine capability, similar to the human brain's role in creating modern civilization. Current systems exhibit "unbalanced intelligence" and lack "true inventiveness and creativity." 这意味着一种通用图灵机能力,类似于人脑在创造现代文明中的作用。目前的系统表现出“不均衡的智能”,并且缺乏“真正的发明能力和创造力”。

Proposed AGI Testing Methods:建议的AGI测试方法:

  • Brute-force test: Against tens of thousands of cognitive tasks.暴力测试:对数万个认知任务进行全面测试。
  • Expert scrutiny: Top experts (e.g., Terence Tao) identify obvious flaws within 1-2 months.专家审查:让全世界最顶尖的专家(如Terence Tao)在1-2个月内找出系统明显的缺陷。
  • Inventive tests: Could it invent a new physics conjecture like Einstein (given pre-1900 knowledge)? Or invent a profound game like Go?发明性测试:它能否像爱因斯坦那样,发明一个新的物理学猜想(提供1900年以前的所有知识)?或者发明一个像Go一样深奥的游戏?

The Elusive "Research Taste" 难以捉摸的“研究品味”

Distinguishing Great Scientists 区分伟大科学家

"Research taste" or "judgment" is the most challenging quality to model in AI. It's the ability to "sniff out the right direction, the right experiment, the right problem." “研究品味”或“判断力”是AI最难模仿或建模的品质之一。它指的是“嗅探正确的方向、正确的实验、正确的问题”的能力。

  • Picking the right problem is the hardest part of science.挑选正确的问题是科学中最难的部分。
  • A good conjecture is interesting and easy to falsify.一个好的猜想应该是有趣且易于证明的。
  • In blue-sky research, experiments meaningfully divide the hypothesis space.在真正的蓝天研究中,实验能有意义地分割假设空间。

AI's Transformative Potential in Scientific Research AI在科学研究中的变革性潜力

The "Virtual Cell" Dream & Molecular Breakthroughs “虚拟细胞”梦想与分子突破

Demis Hassabis's 25-year-old dream is to simulate an entire cell ("Virtual Cell"), enabling "in-silico" experiments that are 100 times faster than wet lab. Demis Hassabis长达25年的梦想是模拟一个完整的细胞(“虚拟细胞”),从而实现“硅中”实验,比湿实验室实验速度提高100倍

Phase 1: AlphaFold阶段1:AlphaFold

Predicts static protein 3D structures.解决蛋白质静态三维结构。

Phase 2: AlphaFold 3阶段2:AlphaFold 3

Models dynamic molecular interactions.迈向建模动态交互。

Next Steps:后续步骤:

  • Model simplest organism (Yeast cell).从最透彻的单细胞生物酵母细胞开始模拟。
  • Model entire pathways (e.g., mTOR).建模整个通路(如癌症相关的mTOR通路)。
  • Ultimately, the whole cell (at protein level, not atomic).最终是整个细胞(在蛋白质级别,无需深入到原子级别)。

AI in Broader Scientific Challenges AI在更广泛科学挑战中的应用

Simulating Origin of Life 模拟生命起源

One of the deepest questions. AI can aid the combinatorial search. Aiming for a "move 37" in life's origins, seeing it as a continuum from physics to biology. AI is the "ultimate tool." 最深刻的问题之一。AI可以辅助组合空间搜索。期望生命起源中出现一个“move 37”,将其视为从物理学到生物学的连续体。AI是“终极工具”。

World's Best Weather Prediction 世界最佳天气预测

Google DeepMind's WeatherNet outperforms traditional fluid dynamics systems, which take days on supercomputers. It shows neural networks can model complex, chaotic systems like hurricane paths effectively. Google DeepMind的WeatherNet系统优于传统的流体动力学系统,后者在大型超级计算机上需要数天才能计算出来。它证明了神经网络可以有效地建模复杂、混沌的系统,例如飓风路径预测。

AI's Profound Impact on Society and Humanity AI对社会与人类的深远影响

Employment & Economic Transformation 就业与经济转型

Programming and math are "hard skills" easier for AI. Demis predicts that in 5 to 10 years, those embracing AI will become "superhumanly efficient," 10 times better than today. 编程和数学等“硬技能”对AI来说反而更容易。Demis预测在未来5到10年内,那些拥抱AI技术的人将变得“超人般地高效”,甚至比今天好10倍

Impact Magnitude: 影响规模:

"This transformation could be 10 times the Industrial Revolution, but 10 times faster, combining to a 100 times overall effect." This requires profound societal response (e.g., Universal Basic Provision). “这次变革的影响可能是工业革命的10倍,但速度会快10倍,结合起来达到100倍的综合影响。”这需要社会深思如何应对(例如全民基本供给)。

AI is a "multi-purpose technology" capable of solving global challenges like disease, energy, and scarcity, echoing John von Neumann's prediction that computers would have a greater impact than the atomic bomb. The priority is to create "radical abundance." AI是一种“多用途技术”,能够解决疾病、能源和稀缺性等全球挑战,呼应了约翰·冯·诺伊曼关于计算机影响将大于原子弹的预测。当务之急是创造“激进的丰裕”。

Ethical Considerations & Future Governance 伦理考量与未来治理

Beyond technology, a "spiritual dimension" or "humanistic dimension" is crucial. AI is an enabler, a tool for human flourishing and understanding the world. 除了技术进步,还需要关注“精神维度”或“人文维度”。AI是一种使能者,是帮助人类繁荣和了解世界的工具。

Dual-Use Technology & Global Cooperation 双重用途技术与全球合作

AGI will eventually be used by nations for war. Demis hopes for more cooperative development and deployment, akin to CERN projects, to mitigate the risk of "bad actors abusing universal technology." AGI最终也会被国家用于战争等目的。Demis希望未来能以更合作的方式(如CERN项目)来开发和部署AGI,以减少“坏人滥用通用技术”的风险。

Regarding p_doom (probability of human civilization self-destruction), Demis maintains it's "non-zero" and "possibly non-negligible," but emphasizes "cautious optimism." He is more concerned about bad actors than the alignment problem itself. 关于p_doom(人类文明自我毁灭的概率),Demis认为它“肯定是非零的,可能也不可忽略”,但他强调“谨慎乐观”。他个人更担心“坏人滥用技术”,而不是对齐问题本身。

Source of Hope for Humanity 人类希望的源泉

  • Infinite Creativity: The human brain is a general-purpose system with almost unlimited potential.无限创造力:人类大脑是通用系统,其潜力几乎无限。
  • Extreme Adaptability: Hunter-gatherer brains navigating the modern world.极强适应性:我们现在用狩猎采集者的大脑来应对现代世界。
  • Unique Human Qualities: Curiosity, adaptability, compassion, and the capacity for love are distinctive and precious.独特的人性品质:好奇心、适应性、同情心和爱的能力是独特且珍贵的。

Google DeepMind: Competitive Edge & Culture Google DeepMind:竞争优势与文化

The Recipe for LLM Leadership LLM领导力的秘诀

Google's shift from "behind" to "leading" in LLM products is attributed to three key factors by Demis Hassabis: Google在LLM产品方面从“落后”到“领先”的转变,Demis Hassabis归因于三个关键因素:

Incredible Team卓越团队

Exceptional leaders & members.杰出的领导者与成员。

Vast Compute Resources海量计算资源

Essential for large-scale training.大规模训练的必要条件。

Research Culture创新研究文化

Blended Google Brain & old DeepMind.融合Google Brain与DeepMind。

DeepMind operates like a "startup," enabling high-level decision-making and agility. They strive to combine the benefits of a large platform with billions of users and the incredible power of AI research, while "constantly chopping bureaucracy." DeepMind像一家“创业公司”一样运作,具有高层的决策力和小型组织的活力。他们试图兼顾拥有数十亿用户的平台优势,以及AI研究的强大赋能,同时“不断削减官僚主义”。

Product Leadership & Future UI 产品领导力与未来UI

Demis Hassabis's product leadership stems from his game design experience. He advocates for applying cutting-edge research to create new user experiences, a skill requiring "intuitive imagination" and "good taste." Demis Hassabis的产品领导力源于他早年为数百万玩家设计游戏的经验。他倡导将前沿研究应用于产品,并创造新的用户体验,这项技能需要“直观的想象力”和“良好的品味”。

  • AI Product Managers: Must be "very technical" to predict AI tech evolution 6-12 months ahead.AI产品经理:必须“非常技术化”,因为他们必须预测AI技术在6-12个月后的发展。
  • Current UI: Text-box interfaces will soon be obsolete.当前UI:文本框式的UI很快会过时。
  • Future UI: Minority Report-like, multi-modal, collaborative, AI-generated, and personalized based on user interaction. "Interface design is an underrated art form" that unlocks system power.未来UI:将是更像《少数派报告》的多模态、协作式界面,由AI生成并根据用户个性化。“界面设计是一种被低估的艺术形式”,它能“释放系统的力量”。

The Gemini Release Cycle & Strategic Compute Gemini发布周期与战略计算

Gemini Development & Benchmarking:Gemini开发与基准测试:

  • Version updates (e.g., Gemini 3) occur every 6 months, involving a "huge hero training run" that bundles new research.版本更新(如Gemini 3)大约需要6个月,涉及一次“巨大的英雄训练运行”,捆绑了新的研究。
  • Intermediate versions (e.g., 2.5) are post-training enhancements.2.5等中间版本是后训练的成果。
  • Different model sizes (Pro, Flash, Flashlight) form a Pareto frontier for various developer needs (performance, speed, cost).不同大小的模型(Pro、Flash、Flashlight)形成一个帕累托前沿,满足不同开发者对性能、速度和成本的需求。
  • Benchmarking aims for an "all-around good general-purpose system" with "no-regrets improvements" and focuses on end-user utility, style, and personality.基准测试旨在构建“全面优秀的通用系统”,实现“不后悔的改进”,并关注最终用户效用、风格和个性。

Compute Scaling & Energy Vision:计算扩展与能源愿景:

  • Compute scaling is driven by training, inference, and "thinking systems" (longer inference = smarter). Training is a small fraction of total compute.计算扩展由训练、推理和“思考系统”(推理时间越长越智能)驱动。训练仅占总计算量的一小部分。
  • Google invests heavily in hardware (TPU) and energy efficiency (data centers, grid optimization, Fusion research).Google在硬件(如TPU)和能源效率(数据中心冷却、电网优化、核聚变研究)方面投入巨大。
  • Future Energy: Predicts Fusion and Solar Energy will be primary sources in 20 to 40 years.未来能源:预测核聚变和太阳能将成为未来20到40年的主要能源。
  • This vision leads to a Kardashev Type I civilization, where energy freedom brings "radical abundance," potentially eliminating root causes of human conflict.这一愿景通向卡尔达舍夫I型文明,其中能源自由带来“激进的丰裕”,可能消除人类冲突的根源。

Collaboration Over Competition 合作而非竞争

Demis rejects treating AI as a "win/lose" race due to its significance. He fosters strong relationships with other lab heads, viewing research as collaborative, especially on safety. Science acts as a "beautiful connector." Demis反对将AI视为一场“赢或输”的比赛,因为它事关重大。他与所有主要实验室的负责人保持良好关系,认为研究是“协作性工作”,尤其是在安全等问题上。科学是一种“美丽的连接器”。

Lex Fridman's Personal Reflections & Philosophical Views Lex Fridman的个人反思与哲学观点

"This Is Water" - Questioning Reality “这是水”——质疑现实

David Foster Wallace's graduation speech: "The most obvious, important realities are often the ones that are hardest to see and talk about." David Foster Wallace的毕业演讲:“最明显、最重要的现实,往往是最难看到和谈论的。”

Key Insights:关键启示:

  • Question Everything: Especially fundamental assumptions about reality, life, and existence.质疑一切:特别是对现实、生命和存在本质的最基本假设。
  • Spiritual Battle in Daily Life: Not on mountaintops, but in mundane moments.生命中的“精神战役”在日常平凡时刻进行。
  • Avoid "Attention Black Holes": Don't waste time on distractions.避免“注意力的黑洞”:不要将时间和注意力浪费在各种“分心”上。
  • Find Meaning in the Ordinary: "Deeply feel the beauty of every moment." Richard Feynman: Science increases appreciation for nature's beauty.在平凡中寻找意义:“深入感受每一个瞬间的美”。Richard Feynman:科学只会增加对自然美的欣赏。

"Everything depends on perspective," and humility broadens wisdom (bar story). “一切都取决于视角”,谦逊地拓宽视角才能获得智慧(酒吧故事)。

Lex's Personal Journey & Philosophy Lex的个人历程与哲学

Background Clarification: 背景澄清:

  • Drexel University: Bachelor's, Master's, PhD.Drexel大学:学士、硕士、博士。
  • MIT: Research Scientist for over 10 years.MIT:研究科学家超过10年
  • Work Ethic: Used to work 80-100 hours/week. Since 2019, time allocated to Podcast.工作强度:曾每周工作80-100小时。自2019年起将时间分配给播客。
  • Passion: Loves research and programming; feels "missing part of self" without publishing papers/systems.热情:热爱研究和编程;不发表论文或系统会感觉“缺少一部分自我”。

Philosophical Stances:哲学立场:

  • Jiu-Jitsu: Teaches humility and facing failure.柔术:学习谦逊和面对失败。
  • Humanity: Believes good outweighs evil, despite everyone being a "mixed bag."人性:相信人性中善多于恶,尽管每个人都是“混合体”。
  • AI's Role: AI advancements will force deeper philosophical conversations about "what it means to be human" and how technology serves humanity.AI的作用:AI的进步最终会迫使技术人员与全人类进行更深入的哲学对话,思考“何为人性”以及技术如何服务人类。