语音内容智能结构化处理工具
Verbal Content Input Structuring - CN 是专门为投资分析师/知识工作者设计的语音转录内容结构化工具。它能够从会议记录、访谈录音、演讲视频等语音内容的转录文本中,智能提取关键信息、识别发言人观点、整理论证逻辑,并按照标准化格式输出,极大提升分析师对语音内容的理解和归档效率。
从复杂的转录文本中精准识别发言人身份和观点表达
以投资分析师/知识工作者视角客观整理发言内容,区分观点与事实
按原始时间顺序整理信息,保持讨论的自然流程
专门针对投资研究场景的语音内容处理
清晰标注每个发言人的身份和观点
重点保留发言人的原始例子和比喻
自动识别转录错误并基于上下文修正
客观视角
以投资分析师/知识工作者身份客观分析内容
身份识别
精确识别每个发言人的身份和观点
原文保留
完整保留关键例子和比喻的原文
首先总结整个转录内容的核心信息和支撑论点,形成一段完整的逻辑概述
输出位置:### Key Logic 部分
注意:这是固定格式,不可更改
按原始时间顺序识别每个主题下的发言人身份和具体表达内容
身份标注
观点提取
例子保留
按照严格的Obsidian语法规范格式化输出,确保后续分析的便利性
三级标题
实体链接
数字高亮
标签生成
### Key Logic
转录内容的核心信息及支撑论点的完整概述(中文)
### 第一个主题或方面的句子
- 某某发言人从某某地方表达/询问了什么(一句话概述)
- 发言人表达的细节1
- 发言人表达的重要细节2
- "发言人举的例子和比喻的原文(翻译为中文)"
- 另一位发言人从某某地方表达/询问了什么
- 发言人表达的细节1
- 发言人表达的细节2
### 第二个主题或方面的句子
- 某某发言人从某某地方表达/询问了什么
- 发言人表达的细节1
- 发言人表达的细节2
#tag1 #tag2 #tag3 ... (至少10个英文标签)
- Andrew Ng指出...
明确身份:姓名+动词
- 主持人询问...
角色身份:职务+动词
- 斯坦福研究员提问...
机构+职务:完整身份标识
- "AI如同让人一次性写完文章"
比喻类:必须保留原文
- "我有一个有争议的观点,我认为现在是每个人,无论什么职位都应该学习编程的时候"
重要观点:保留关键表述
- "快速行动,承担责任"
核心理念:保留原始表达
AI Fund
Coursera
GitHub Copilot
所有实体名称必须使用英文,并转换为带title气泡的span
平均每月孵化1个初创公司
数字+单位:仅高亮数字(使用span)
#AI_fund #startup_speed #concrete_ideas
标签:全英文,至少10个,放于文档末尾
这是一个真实使用场景,展示了如何将Andrew Ng在斯坦福大学创业学校的演讲视频转录,通过本工具转化为结构化的投资分析笔记。
It's really great to see all of you. What I want to do today since this is build as startup school is share with you some lessons I've learned about building startups at AI fund. AI funds a venture studio and we build an average of about one startup per month. And because we co-founded startups, we're in there writing code, talking about customers, design on features, detering pricing, hiring, fundraising, all of that. And what that's taught me is that the single greatest predictor of startup success today is speed of execution. And the new AI technologies are dramatically accelerating startup building. And so I want to tell you about some of the things that we've seen working for us. I think there
are some common misconceptions that I'm also finding myself
dispelling when talking to entrepreneurs.
So, you know, the first thing is about the AI stack. So at the very bottom you have semiconductor companies. And on top of that, you have the Hyperscalers, the cloud service providers. On top of that, you have the Foundation model companies, Large Language model companies. And then on top of that, you have the application layer. And by definition, the biggest opportunities must be at the application layer because applications have to make enough revenue to pay the foundation models, to pay the cloud, to pay the semiconductors to sustain their entire ecosystem. There are opportunities at every layer of the AI stack, sure. But I think opportunities at the application layer are larger.
So, you know, the media and social media tends to focus less on the application layer. Hopefully this talk will help change your mind.
Let's talk about speedy execution. One of the things that I find most exciting about AI, and it's also creating a lot more opportunities for startups, is the rise of what I call Agentic AI. So the way large language models have been used is, you give it a prompt and it generates a continuous output. That's like asking a human being to write an entire article in one go without being able to revise it. And that's not how humans write best, and it's not how AI does best either. And so Agentic workflows are where you allow the AI system to iterate. So for example, first write a paper outline, then go and research the web to get some web pages. Then write a first draft, then read your first draft and critically revise it. So through multiple cycles, it's slower, but it produces a much better work product. And in many of our projects at AI Fund, whether it's processing complex compliance documents to medical diagnosis, to reasoning about complex legal documents, I find that Agentic workflows are the key differentiator for whether or not the work works. So in the past year, there's been a new layer of the AI stack, what I call the Agentic orchestration layer, that's making it easier for application builders to orchestrate calls to the underlying technology layers, like foundation models, cloud services. But the conclusion for me is still that the application layer is the most valuable place to be in the stack, and I continue to prefer to focus on the application layer.
[... 完整演讲内容 ...]
... and we still have to keep up that work to to protect open source thank you all very much it's wonderful to see my thank you
原始转录特点:语音识别可能存在错误,需要基于上下文智能修正,但这里为了示例完整性,展示了较长的原文片段。
此次演讲的核心信息是,在人工智能快速发展的时代,创业成功的强大预测因子是执行速度,而新的AI技术正在极大地加速创业公司的发展。Andrew Ng强调,最大的创业机会位于AI堆栈的应用层,并通过推广Agentic AI工作流、鼓励构建具体想法、利用专家直觉、专注于单一假设、以及采纳AI辅助编程和快速产品反馈策略来提升速度。他还指出,理解AI技术本身能够帮助创业者做出更快的决策,因为AI构建模块的组合效应呈指数级增长,同时呼吁赋能每个人学习如何利用AI工具,并警惕围绕AI的过度炒作和对开放生态的威胁,强调在追求速度的同时也需肩负社会责任。
结构化特点:完整复现了源笔记的所有细节,包括所有主题、观点、引用和标签,展示了工具处理长篇语音内容的强大能力。
以投资分析师/知识工作者视角客观传达信息,区分观点与事实
保持原始时间顺序,维护讨论的自然流程
完整保留关键例子和比喻的原文表达
发言人识别
精确标注每个发言人的身份和观点归属
转录错误修正
基于上下文智能识别并修正语音识别错误
原文保真度
重要表述和例子保持原汁原味
信息层级
按重要性对信息进行分层处理
实体标准化
统一实体命名便于后续关联分析
标签体系
生成丰富标签便于知识库检索
智能化提升
更准确的发言人识别和情感分析
多语言支持
支持更多语言的转录内容处理
知识图谱
自动构建实体关系网络
Verbal Content Input Structuring - CN - 语音内容智能结构化工具
Designed for Investment Analysts | Powered by AI